

Sampling Plan & Power Analysis

Common Questions in Research

• Is this a solid research question?

- How should I collect data?
 What sampling plan will be used
- How big of a sample is needed?
 - Power analysis

Outline

- RQ development
- Sampling plans
 - Reasons for sampling
 - Different sampling methods
 - Participant recruitment considerations
- Power analysis
 - Purposes
 - Components of power analyses

Research Question Design

- Clear
 - Audience should need no other explanation
- Focused
 - Broad research questions can be difficult to fully test and answer
- Concise
- Complex
 - Not yes/no, not answered with descriptive statistics

Strong vs Weak RQ Examples

• What are the academic beliefs of first generation college students?

 Doreligious groups differ on their likelihood of seeking psychological services?

> IV- Religious Groups (Atheist, Christian, Muslim) DV- Likelihood of seeking therapy

Sampling Plan

Countries by Population Size

- A sample is a smaller (but hopefully representative) collection of units from a population used to determine truths about that population (Field, 2013)
- Why sample?
 - Resources (time, money)
 - Gives results with known accuracy that can be calculated mathematically
- The sampling frame is the list from which the potential respondents are drawn

Target population

Study population

Sample

- What is the population of interest?
- Who do you want to generalize your results to?
 - All doctors
 - Or just family practitioners?
 - School children
 - Women aged 18-45 years

- 3 factors that influence sample representativeness
 - 1. Sampling procedure
 - 2. Sample size
 - 3. Participation (response rate)

Types of Samples

- Probability (Random) Samples
 - Simple random sample
 - Stratified random sample
 - Does your sample have important demographic characteristics?
 - Want to ensure sample represents the population

Types of Samples

- Non probability (Non random) Samples
 - Ensuring that every individual in a population has a nonzero probability of being selected is difficult to accomplish
 - Not always possible to draw a random probability sample
 - <u>Convenience sampling-</u> the sample is selected because they are available to the researcher
- Advantages
 - More conducive and practical for deploying a survey
 - Faster, more cost efficient
- Disadvantages
 - Bias can be introduced
 - Does the sample accurately reflect the population?

Types of Sampling

- Online recruitment
 - Social media
 - Locate service workers on LinkedIn
 - Interest groups on forums/ subreddits/ facebook communities
 - Email lists
 - Snowball sampling
 - Paid recruitment
 - <u>www.Prolific.co</u>

Power Analysis

Power Analysis

Power Analysis

- Can be used for standard GLM analyses
 - This does not include other complex analyses such as SEM, path analysis, factor analysis, etc.
- Power analysis can be useful for
 - Determine the number of participants to recruit
 - Identify how much time will be needed for data collection
 - Anticipate what analyses will be feasible
 - Determine the cost of a study

Power Analysis

- 4 components of a power analysis
 - Effect size
 - Chosen based on previous research, pilot study, intuition, etc.
 - Power level (1- β)
 - Generally set at .80 (or .95 for clinical research)
 - Significance level (a)
 - Generally set at .05
 - Sample size
- Given any three, we can determine the fourth

х

 \sim

 \sim

Website that includes a G*power guide:

http://www.mormonsandscience.com/gpower-guide.html

Write-up Example

An a priori power analysis was conducted using G*Power 3.1.9 to determine the minimum sample size required to find statistical significance using a one-way ANOVA with three groups (i.e., 3 different diabetes groups). With a desired level of power set at .80, an alpha (α) level at .05, and a moderate effect size of .30 (*f*), it was determined that a minimum of 111 participants were required to ensure adequate power. Additionally, it was determined that a minimum of 90 participants would be required to ensure adequate power for an independent samples *t*-test with a moderate effect size of *d*=.60 (Cohen, 1988). Therefore, a sample of 130 participants was recruited to ensure adequate power for all necessary analyses.

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.